
Supplementary Methods 
 
Evaluating the impact of TAD variation on identification of collateral dependencies. 
 
We undertook additional analyses to ensure that neither TAD size variability nor definitions 

would significantly impact the identification of fusion-associated collateral dependencies. To 

evaluate whether there is a correlation between the number of genes in a TAD and the odds of 

having a collateral dependency, we first stratified genes into rough quartiles of TAD size based 

on the number of genes in each TAD. There were 16,151 genes that were assigned to TADs 

based on our definitions. Edge cases of genes falling between quartiles were randomly 

assigned to one quartile or another (resulting in some variability in the number of genes 

assigned to each quartile). The final counts of genes attributed to each TAD quartile stratified by 

size were as follows: 

TAD quartile Gene count determining 
TAD sizes 

Number of genes assigned 
to TAD quartile 

1 1 - 6 3,865 
2 6 - 11 3,984 
3 11 - 22 4,455 
4 ≥ 22 3,847 

 
We next used these quartiles to carry out a stratified enrichment analysis for collateral genes 

among dependencies in the context of fusions to demonstrate that the degree of enrichment of 

fusion collateral genes among dependencies was not significantly different between TAD 

quartiles. 

We also sought to determine if using genomic distances, instead of TAD boundaries, 

would result in a different outcome for the enrichment of collateral genes amongst 

dependencies. Focusing on fusions exclusively, for each cell line, we 1) identified genes that 

were absolute dependencies and 2) identified genes that were “collateral” genes relative to 

fusions in that cell line, based on a symmetric genomic window of 930 kb (465 kb on either side 

of the start of a gene), corresponding to the average TAD size. Across all cell lines, we 

observed the total instances where an absolute dependency was a collateral gene vs. not a 



collateral gene, calculated the odds ratio (OR), and determined significance using a Fisher’s 

exact test to establish that the enrichment of collateral genes amongst dependencies in the 

context of fusions was robust to alternative TAD definitions. 

Using fusions as a biomarker to identify associated overexpressed genes across 

DepMap through genome-scale screening. An analogous approach to that described for 

identifying fusion-associated dependencies was applied to identify genes overexpressed in a 

genome-scale pan-cancer unbiased screen. In order to enable uniform comparison between cell 

lines with and without a fusion of interest, we consistently evaluated RNA expression for all 

exons in protein-coding genes, as calculated by the Broad Institute’s GTEX pipeline 

(https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md).  

Again, for each of the 3,277 fusions, all cell lines were stratified by the presence or absence of 

the fusion of interest, the mean log2(TPM + 1) of RNA expression for each protein-coding gene 

was calculated for each group, and a two-sample t-test with the assumption of equal variance 

was carried out as a screen to identify genes that were overexpressed based on the difference 

in log2(TPM + 1) between both groups. Correction for multiple-hypothesis testing was done 

using the Benjamini–Hochberg method to arrive at Q values. Partner and collateral genes were 

defined as above. We used thresholds of log2 fold change (TPM + 1) > 1 and Q < .05 to identify 

genes that were significantly overexpressed. Q values were again -log10 transformed for data 

visualization. 

Further validation of enrichment of SV partner and collateral genes among absolute 

dependencies. To further validate findings from our enrichment analyses, we performed 209 

iterations of the analyses, removing a single cell line at a time for each iteration to determine if 

any individual cell line was driving the observed enrichment. We also carried out multivariate 

logistic regression analyses to determine if the association between dependency status and 

partner status, as well as dependency status and collateral status, would persist when 

accounting for the covariates of disease type and cell line. 



Hotspot driver mutation analysis in cell lines with and without fusion-associated 

dependencies. For the 645 cell lines for which fusion and dependency data was available, we 

evaluated each cell line for the presence or absence of a hotspot mutation in a gene from the 

COSMIC cancer census (https://cancer.sanger.ac.uk/cosmic/curation). To identify hotspot driver 

mutations, we narrowed our scope to known COSMIC Cancer Census genes with mutations 

that were recurrently seen in the TCGA (range 3 – 784 occurrences, mean 73 occurrences). 

Cell lines were subsequently stratified by the presence or absence of fusion-associated 

dependencies to compare the proportion of cell lines with hotspot driver mutations and the 

mean number of hotspot mutations per cell line. 

Permutation testing to determine if fusion-associated differential dependencies occur 

more than would be expected by chance. To determine if fusion-associated differential 

dependencies were occurring more than would be expected by chance we took two different 

approaches to permutation testing: permuting gene labels and permuting fusion labels. For our 

gene-label permutation, for each of 3,277 fusions, we kept the total counts of significant 

dependencies, partners, and collateral genes constant. We shuffled gene labels relative to 

dependency probability scores 1,000 times for each fusion, controlling for RNA expression by 

only allowing for shuffling within a given RNA expression quartile, and counting the number of 

fusion-dependency pairings occurring by chance across all fusions with each iteration. For 

collateral fusion-dependency pairings, we carried out an additional gene-label permutation, this 

time controlling for TAD size by shuffling gene labels within TAD quartiles as defined before. 

For our fusion-label permutation, we kept each fusion-dependency relationship constant and 

shuffled fusion labels relative to fusion-dependency relationships 1,000 times, controlling for 

disease type by only allowing for shuffling within a given disease category, and counting the 

number of fusion-dependency pairings occurring by chance across all fusions with each 

iteration. This allowed us to build empirical null distributions for 1) the count of partner fusion-

dependency pairings and 2) the count of collateral fusion-dependency pairings that would be 



expected by chance across all fusions. P-values were calculated based on the number of 

instances in 1,000 permutations that were greater than or equal to observed counts of fusion-

dependency pairings. 

Cell line permutation-based FDR estimation as an approach to fusion-associated 

dependency discovery. Because of the non-Gaussian distribution of dependency scores and 

small numbers of cell lines with any given fusion, we carried out additional cell line permutation-

based FDR estimation as an approach to fusion-associated dependency discovery. For each 

fusion, we limited hypotheses tested to a gene set of partner and other TAD genes. We then 

carried out 1,000 cell line permutations p based on the number of cell lines n containing a fusion 

in our dataset (ranging from 1-11), calculating t-statistics across all genes g for each permuted 

iteration. This resulted in a p x g permutation matrix for each n. The permutation matrix 

corresponding to the n for a given fusion was used to calculate FDR values for the gene set as 

previously described(1,2). For each fusion-gene pairing, we defined S, the number of actual 

significant features, as the number of genes in the gene set with a t-statistic greater than or 

equal to the gene in consideration. We defined F, the average number of false positives, as the 

average number of genes in the gene set across all permutations p for which t-statistics were 

greater than or equal to the gene in consideration. This allowed us to calculate an FDR for each 

gene in the gene set for a fusion as FDR = F/S. 

Fusion representation in clinical samples. Fusion calls from RNAseq data were available 

from a prior study utilizing different methodology for fusion detection among 9,624 TCGA tumor 

samples from 33 cancer types as previously described(3). For fusions associated with 

dependencies in our analysis that were derived from tumors represented in the TCGA, we 

evaluated the frequency that an exact fusion match was seen in the clinical dataset. For this 

same fusion set, we also determined which partner was the most recurrent in the clinical 

dataset, and the frequency with which this partner was seen (with 99% of CCLE fusions with 

associated dependencies having at least one partner seen in the TCGA fusion dataset). 



Determining sgRNA location and illustrating fusion transcripts. CRISPR-Cas9 guide 

(sgRNA) location was evaluated relative to fusion breakpoints for COSMIC fusions and other 

fusions with associated partner dependencies. This was based on the logic that if the 5’ fusion 

partner had forward orientation then the region to the left of the breakpoint was preserved, and if 

it had reverse orientation then the region to the right of the breakpoint was preserved in the 

resulting fusion; the opposite logic was applied to the 3’ fusion partner. Based on this, we were 

able to determine if the 3-5 sgRNAs for a given gene involved in a fusion mapped onto the 

resulting transcript. Resulting fusion transcripts and relative location of sgRNAs were visualized 

using the St. Jude ProteinPaint web application (https://proteinpaint.stjude.org/)(4). 

Approximately 20% of partner dependencies were associated with fusions for which sgRNAs did 

not fall on the predicted transcript. 

Code Availability. All analysis was done in R (v.3.6.1) using the RStudio GUI (v.1.2.5001). 

Select logistic regression analyses were carried out on a virtual machine with R software 

through the Terra Google Cloud Platform. Commercially available Adobe Illustrator 23.1.1 

(2019) was used for figure formatting. Parts of conceptual diagrams were made with BioRender 

at https://app.biorender.com/. All of the scripts for analysis and other figure production were built 

in-house and are provided on GitHub at https://github.com/riazgillani/Gene-fusions-create-

partner-and-collateral-dependencies-that-are-essential-to-cancer-cell-survival. 
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